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In this paper a time-splitting technique for the two-dimensional advection-disper-
sion equation is proposed. A high resolution in space Godunov method for advection
is combined with the RTO Mixed Finite Element for the discretization of the dis-
persion term. Numerical tests on an analytical one-dimensional example ascertain
the convergence properties of the scheme. At different Peclet numbers, the choice
of optimal time step size used for the two equations is discussed, showing that with
accurate selection of the time step sizes, the overall CPU time required by the sim-
ulations can be drastically reduced. Results on a realistic test case of groundwater
contaminant transport confirm that the proposed scheme does not suffer from Peclet
limitations and always displays only small amounts of numerical diffusion across
the entire range of Peclet numbersg 2000 Academic Press
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1. INTRODUCTION

In this paper we concentrate on the advection-dispersion equation, which, for exam
can be used to describe solute transport in two-dimensional porous media. This eque
is difficult to approximate when advection dominates because sharp concentration fr
tend to develop and move without changing form. It is well known that standard fin
difference and finite element methods may not work well for problems with sharp fron
showing non-physical oscillations. To overcome these phenomena, numerical schemes
combine numerical stability with minimal artificial diffusion. Two approaches are general
used in these situations. One is based on the definition of a proper control volume w!
upwind techniques can be used for approximating the advective flux. In this case the stak
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182 MAZZIA, BERGAMASCHI, AND PUTTI

of the scheme is obtained by adding an amount of numerical diffusion that is depenc
on the approach used [15]. The other class of methods originates from the splitting
the dispersion and advection fluxes into two separate partial differential equations (PC
containing one the dispersive and the other the advective term, respectively. These
equations are then discretized, each with the technique deemed most appropriate. Spl
allows the combination of explicit time-stepping for advective fluxes with implicit time
stepping for dispersive fluxes. This approach lessens the stability constraint connected
explicit discretization of the dispersion term but maintains the possibility of using efficie
explicit schemes for advection. Belonging to this class are the Eulerian—Lagrangian sche
[14, 3] or the fully Eulerian Godunov-mixed methods (GMM) [4—7]. In this latter approacl
a time-explicit, spatially second-order accurate Godunov method is used to treat advec
and a time-implicit, spatially second order accurate mixed finite element method is usec
modeling dispersion.

In this work we investigate the numerical behavior of a time-splitting technique in tw
spatial dimensions, similar in spirit to the GMM approach. Using Euler time-stepping, t
advective termis discretized by a triangle-based, high resolution finite volume (FV) sche
[16, 9, 13], while the dispersive flux is discretized using a mixed hybrid finite eleme
(MHFE) technique. The choice of these two schemes is dictated, on one hand, by t
accuracy, robustness, and efficiency in handling nonuniform meshes and highly vari
coefficients. On the other hand, both FV and MHFE are based on the weak formulation of
governing equation and use similar functional spaces for the approximation of the depen
variable, making them ideally suited for combination in a time-splitting approach. Tl
main difference between the GMM approach and the proposed one lies in the unstruct
character of the spatial discretizations of the latter. This implies, in contrast with the origi
GMM approach, the use of triangular meshes together with fully multidimensional slo
limiters in the FV phase. More precisely, the time splitting scheme employs explicit a
implicit Euler time-stepping for FV and MHFE, respectively, while piecewise constal
basis functions are used by both techniques to approximate concentration. Second ¢
accuracy in space is obtained by MHFE at special superconvergence points (the cent
of the triangles) [8]. The FV approach achieves spatial second order accuracy (away f
sharp fronts) by employing linear reconstruction plus slope limiting, combined in su
a way as to locally satisfy the maximum principle [13]. The resulting numerical scher
is first order accurate in time and second order accurate in space. Both MHFE and
are locally (at the element level) conservative and monotone. The combination of the
methods in the time splitting approach should maintain these two properties as long
stability requirements are met, as confirmed also by numerical results. In principle th
are no difficulties in extending our technique to three dimensions. This is done by mer
employing three-dimensional versions of MHFE and FV. Proper implementation of F
requires the development of tetrahedra based slope limiters, a field that is still subjec
active research.

Numerical tests on a one-dimensional sample problem (movement of a tracer in a s¢
infinite column) are used to validate theoretical results for different Peclet numbers
heuristic analysis on the relative role of the two discretization schemes in the converge
behavior of the proposed approach is aimed at determining the best time-stepping stre
for the explicit and the implicit schemes. At each implicit step, a number of explicit tim
steps can be performed, according to accuracy and stability requirements. In this way
proposed approach can be viewed also as a sub-stepping technique for the solution ¢
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advective phase. In addition, we present a realistic test case—the Gureghian test—
compare the numerical results obtained by the proposed scheme with those availab
the literature [10]. These test cases show that the proposed approach does not suffer
Peclet limitations and always displays small amounts of numerical diffusion, maintaini
high order of accuracy across the entire spectrum of Peclet numbers and high computat
efficiency.

2. THE NUMERICAL SCHEME

Subsurface contaminant transport is governed by an advection-diffusion equation of
form

9
%Jrv (3¢ — DVC) = onQ x (0, T],

c=c’ onQ x 0,
c=bp onI'p x (0, T], Q)
—DVc- i = by only x (0, T]
(¢ — DVC) - fi = be onlc x (0, T],
wherec is the concentration of the solut¢(t) is the porosity of the mediuniy(X, t) is
Darcy’s velocity,D = D () is the tensor accounting for mechanical dispersion and mole
ular diffusion, andf is a source or sink ternf) e R? andI” = <2).

Denoting byF andG the advective and dispersive fluxes, respectively, Eq. (1) may |
written as

9 - o o

%ij.(F_;_G):f on x (0, T] (2
F =1ic 3)
é:—D%C. (4)

As the geometry of the physical domdinis often complex when dealing with real world
applications, we choose to work with unstructured meshes, andhisisliscretized into
mtriangles,T;,| =1, ..., m. Concentratiort can be approximated by

CZZCH/A, )
=

wherey, are Py(T)) scalar basis functions, taking on the value one on triamgéend zero
elsewhere. Multiplying Eqg. (2) by, and integrating in space and time, with time-step
over the time intervalt[< tk+1], the following semidiscrete equations are obtained,

BRI gk _ /[V (F(E19) 4+ G () — £49]dA,  I=1,...,m, (6)

il

wherecf is the volume average ovér defined by

I c(-, t% dA
ITi]

k:

: (7)
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|Ti| is the area oT}, ¢ is considered constant within each triangle, and a weighted scheme
used for the time quadrature with weighting parametef0.5, 1] andc*+? =dc(., tk+1) 4+
(L—0)c(-, t*) =ock1 + (1 —06)ck.

Denoting byL 4 the spatial discretization operator for dispersion, where we also inclut
the source termf, and byL, the spatial discretization operator for advection, the fully
discretized equations become

P = ek + At[La (@) + Lo D], 1=1,...,m, (8)

where foré =1 we have the implicit Euler scheme fbog and explicit Euler scheme for
La. Ford =0.5 the above equation reduces to the midpoint rule for h@thndL,. In the
following we consider only Euler schemes, i#&= 1.

The numerical fluxek ; andL 4 are evaluated by means of the discretization methods th
are deemed more appropriate to solve, respectively, the advection and diffusion equat
For advection, we consider a high resolution triangular finite volume (FV) discretizati
by following the scheme developed in [13]. It is a second-order total-variation-diminishil
(TVD) type scheme satisfying the maximum principle. It is accurate in the presence
steep fronts and introduces minimal numerical diffusion without oscillations. This meth
requires explicit time-stepping and thus stability is guaranteed by a CFL restriction
At. Possible nonlinearities can also be resolved without iteration. This can be seen .
disadvantage of the time-splitting method with respect to fully implicit schemes, which ¢
not impaired by stability constraints. However, in many problems of practical importanc
CFL numbers less than unity are required to maintain accuracy. Thus stability constraint:
automatically satisfied and do not pose limitations. The dispersive flux is discretized by
implicit MHFE method. This approach has been chosen because of its intrinsic compatibi
with the FV method. Since it is implicit in time, there is no stability restriction on the time
step connected with MHFE.

Inthe following we describe first the splitting scheme and then the two space discretiza
methods.

2.1. The Time-Splitting Technique

The time-splitting technique can be viewed as a predictor-corrector approach and ca
described by the following algorithm:
For each time step do:

o advection step: for each solven, times with the explicit FV scheme, witht, as
the time step, determining the predictor concentraéiﬁﬁ

1. ¢|<0> ¢k © . c|
2. D0ig=0,n—1

¢(|a+1) (ia+1) _ ¢(|a) (ia) + Ata[La(q(ia))} (9)

END DO
3. é:(+1 Cl(na)
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e dispersion step: for each solve with implicit MHFE method usm@,'“rl

condition

as initial

with Aty = nyAt,, obtaining the final approximatiqu‘f“.

Because the stability of the advection step is determined by the CFL constraint, wi
the dispersive time step is not subject to stability restrictions, we use two different til
steps for advection and diffusiomzt; and Aty, respectively. Therefore a finer advection
time step together with a coarser diffusive time step can be employed. The converge
rate of the scheme is influenced by the convergence rates of the two spatial discretiz:
methods employed. Namely, first order accuracy in time and second order accuracy in s
is expected at the centroids of the triangles, as both FV and MHFE are spatially second ¢
accurate. Accuracy is also influenced by the different time step sizes that can be used i
advection and dispersion discretizations. A heuristic analysis trying to find the optimal
in different situations will be reported in a later section.

2.1.1. Finite volume discretizationIn the advection step, Eq. (9) can be explicitly
written as

At > =3
G = gk — = V- (F()da, 1=1..,m (11)

and is solved using as initial condition the solution calculated at the end of the previous t
step. The discretization of (11) is obtained by means of the finite volume scheme on
unstructured triangular grid, as developed by [9] and then modified by [13]. The technic
can be described as follows.

Application of the divergence theorem to the right-hand side of (11) yields

GlrLakHt — gkek T Z/a, -fyj dr, 12)

whereg;, j =1, 2, 3, are the edges of triangle andn; is the corresponding outward unit
normal. The approximation of the three line integrals in the above equation is obtainec
a two step procedure. The reconstruction step approximates the values of conceci‘trati(
over each triangle. Second order accurate reconstruction is achieved by linear interpolz
in combination with a limiting procedure that explicitly prevents the formation of overshoc
and undershoots. The reconstructed values are used in the second step to build a two-
Lipschitz monotone flux approximatirié(c,k) e

The reconstruction step, following [13], proceeds as follows: for the triamgleith
centroidx;, three linear interpolants are built using the values of the nearby triangles, ¢
Tp, Tg, Tr Of Fig. 1. Denoting by; the pair of coordinates of the centroidiyf j =1, r, p, g,
we construct{ as the linear interpolant of the pointsq., ¢f), (Xp, €5), (Xq. ¢8)}, while
L2 is the linear interpolant of(x, cf), (Xq, c'a), (%, ¢} and L is the linear interpolant
of {(x1, ), (X, €5), (Xp, c‘;,)}. If an edge ofT, is on the boundary, the value ofon the
midpoint of that edge is used instead of the centroid value in the linear interpolation.
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FIG. 1. Sample triangulation grid.

Once the three interpolants are calculated, the magnitude of the gradibhtcah be

expressed as
. 9 \? 9 \?
VL] | = —L} —L} =123 1
vL| (8X|>+(8y|), =123 (13)

Starting from theL|j with maximum gradient and going toward tihé with minimum
gradient, we choose the firgtsuch that

L{ (xp) is betweerck andck
L! (xq) is betweerck andck

L/ (%) is betweerck andck,

wherex, is the midpoint of the edge sharifgandT,, and so on. If nd_lj satisfies these
three requirements, we compute the local upper badidand the local lower boundB,

of triangle T,. They are defined, respectively, as the maximum and the minimum of t
concentration values at the centroids of the triangles that have at least a common point
the triangleT,. Starting again fronk/ with maximum gradient we choose the fijssuch
thatL] satisfies

UB > max(L{ (xp), L] (xig), L 04r))

v

LB, < min(LJ (xp), L{ 04g), L) (xi0)).

IA

If no interpolant satisfies these inequalities, we choose as interpolant a piecewise con:
reconstruction, that id,; assumes a constant value equactl“to

Once the linear interpolatioh, is obtained, the reconstructed values at the midpoint
of each edge off; from inside and outside the triangle, i.da_|,(x|‘}‘) and L|(x,‘j’“t), re-
spectively, are the boundary conditions for the local Riemann problem. The line integ
faj ﬁ(qk) -fyj dI" is approximated using the midpoint formula by(L, (x,i}‘), L, (xﬁ“t))|e,- [y
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whereh; is the Godunov flux, andk;| is the length ofg;. The spatially second order
accurate discrete approximation to (11) is then

At S 4
PGt = g — il D hi (L), Li(x3)) leg1- (14)

=1

2.1.2. MHFE discretization. In the dispersion step, our implementation of the MHFE
applied to the discretization of (10) produces the following system of linear equations,

/ D|_1é| - w; dA —/ C% - w; dA +/ AWy -mdll =0 (15)
T T T
¢|k+l|-|-| |C|k+l / S ¢|k|T| |C|k /
- V-G dA = —— fidA 16
Ay + : | Aty + a (16)
/é.-ﬁ.dr+/é,-ﬁrdr=o ifejeTiNT, (17)
€ g
/é|~ﬁ|dF=bN ifejeFNﬂ'ﬁ (18)
&
Aj =bp if e € I'p, (29)
wherei=1,2,3,I=1,...,m,j =1,...,n,nbeing the number of edges. The quantities

with subscript are defined over elememt, while | T)| denotes the area @f. The dispersive
flux G is approximated for each by

3
Gl:zgjllﬁjl, l=1,....,m, (20)
i—1

where thew; are the discontinuous RTO vector basis functions. The unknown Lagrar
multiplier A is expressed as

n
j=1

where theu; are piecewise constant basis functions defined on edgadAi; represents
the trace of the concentration ep

Inthe above system, Eq. (15) isthe MHFE discretization of the dispersive flux (4); Eq. (
represents the discretized version of (2) without advective terms, as required by the ti
splitting approach; Eq. (17) guarantees continuity of the normal flux across interelem
edges, while Egs. (18)—(19) are the explicitly imposed Neumann and Dirichlet bound
conditions, respectively.

The final hybrid formulation can be written in matrix notation as

A -B Q gk+l 0
BT Pk+l 0 Ck+l =|f+ Pkck , (22)
QT 0 0 )\k-‘rl by
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whereA=diag[A;, ..., An], B=diag[By, ..., By], P*=diag[pX, ..., p&], and
A = (ak) = /T Dy Yy - Wi dA, B =)= /T% - wj dA
i i
Q= (@)= [ i Fdr el = gfTI/a (23)
i
6= @) =g == [ fda
i

wherei, k=1,2,3,j=1,...,n,r=3(1-1) +i, andc* = (q), A*1 = (1}), andby =
(bnj) whereby; assumes a non-vanishing value only if there is a Neumann condition ot

boundary edge;.
T W o B B (24)
WT 0 AkJrl - bN ’

where

A -B gt 0 C
T= (BT pk+l> ’ o= (Ck+1 ’ B= f4 pkgk | W= (O) (25)

Matrix T is easily invertible because submatricksnd B are block-diagonal with & 3
and 3x 1 blocks, respectively, anB*** is diagonal. The solution of (24) can be obtained
by means of the Schur complement with respedi to

| T-1 o\ T8 26
0 —WTTiw /) (A1) 7 \py—wWTT13/" (26)

The second equation defines a system of linear equations in the multipliers only:
WTTIWAKL = WTT-13 — by, (27)

Its expression in terms of the original matrices and vectors can be obtained by noting
WTT-IW = QT T;'Q andWTT-18 = QT T, (f + P*c¥). Denoting by

H=pP<l4BTAIB, S=AB M=Al_SHIS (28)

so that

M SH!
-1
= (—H-lsT H-1 > (29)

the final system for the multipliers reads
Q"MQAK! = QTSH(f + PXcX) — by. (30)

The matrix Q"M Q is symmetric and positive definite and thus Eq. (30) can be solve
using a preconditioned conjugate gradient scheme to obtdih The unknowrckt! can
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be computed in view of (26) by

Ck+1 _ _TZElQA + T2721(f + Pka) — H_lSQAk+1 + H_l(f + Pkck), (31)

2.2. Boundary Conditions

The intrinsic nature of the time-splitting approach requires careful implementation
boundary conditions. In this respect, however, we are facilitated by the fact that in grou
water contaminant transport problems only a limited variety of boundary conditions
physically admissible (e.g., in general no boundary layers occur). To better describe |
the boundary conditions are implemented in the proposed approach we distinguish bety
inflow and outflow boundaries. Inflow boundaries are characterized by having flow veloc
normal components - i directed inside the domain. Dirichlet or Cauchy boundary cond
tions may be of use in this situation. In the special cage bf= 0, Neumann type boundary
conditions can also be employed. Implementation of these types of boundary condition
the time splitting algorithm is obtained by specifying Dirichlet-type boundary conditior
in the advective step and Neumann-type boundary conditions in the dispersive step.
example, inflow from a distributed source of contaminant can be specified as

vC-N = ¢, - N = i.e., Dirichlet b. c.c= ¢, for the advection step

—DVc - i = 0 = i.e., zero Neumann flux for the dispersion step.

Outflow boundaries are characterized by outgoing velocities and are easily implemente
imposing in the dispersion equation zero Neumann fluxes, as the outgoing advective flt
governed only by the velocity field.

Other type of conditions that may occur concern the presence of internal injection
extraction wells. Also in this case inflow or outflow are governed by the flow field ar
possible boundary conditions are easily implemented by Dirichlet plus zero Neumann
by zero Neumann conditions for injection and extraction wells, respectively.

3. NUMERICAL RESULTS

The behavior of the proposed numerical scheme can be characterized as a functic
two grid related dimensionless numbers, the Courant—Friedrichs—Lewy (CFL) number
the Peclet (Pe) number. The CFL number can be defined for each trigrafd13]

T dF
CFL = At, sup— sup{ b (32)

ITi dc

whereT, and|T;| denote the perimeter and the aredgfrespectively. Stability of the FV
scheme requires that CP_L%. The Peclet number represents the ratio between the advect
and the dispersive term and can be defined in our case as [16]

CFL
Pe= —, (33)
14
where the dispersion numberis given by
1
y = |D|Atasup— (34)

ITil
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and|D| is the norm of tensob. Low Peclet numbers indicate that dispersion is predominat
over advection, and vice versa.

3.1. One-Dimensional Tests

The numerical convergence rate of the time-splitting technique is tested on a o
dimensional model problem solved in a two-dimensional grid system. We consider
partial differential equation describing the movement of a tracer in a semi-infinite colur
and simulate it on arectangular domain of unitlength, with(v, 0) andD = diag(D1, D1).
The boundary conditions= 1 atx = 0 andc = 0, for x = oo are imposed. Zero concentra-
tion is used as the initial condition. This situation is simulated numerically by employing
grid of unitary length and making sure that at the time at which the relative error is evalua
the solution vanishes naturally at the right boundary. The analytical solution to this probl
is [1]

1 X+ vt
c(x,t) = erfc ex erfc—— 35
0= ( 2¢D1 * ]Dl 2\/D1> (35)

The numerical convergence behavior of the scheme is evaluated by calculating erro
different grid levels. For a given levklthe error norm is calculated as

o = VT (ex ) )

) (36)
Sitoc(xi, tk)z
wherec(x, t¥) is the analytical solution on the centroid Bfat timetX andc,k is the cor-
responding numerical solution. For all the subsequent test runs we consider the solutic
=0.1s.

Five grid levels are used and defined as follows. At the coarsestllevédl)the rectangular
domain is discretized into three layers of rectangular elements that are further subdivi
into two triangles. The refined triangulations<(2, . . ., 5) are obtained by connecting the
midpoints of the three edges of each triangle. To reduce the dimensionality of the mesh
height of the domain is always halved in passing from a coarser to the next finer level
such a way that the shape of the triangles at the different levels is preserved. The coa
mesh is defined on the rectangle 1 x [0, 0.1] and is characterized by 300 triangles and
204 edges, while the finest levék 5) is defined on the rectangle, [0] x [0, 6.25x 10-%]
and is characterized by 4800 triangles and 3204 edges. In the case of constant coeffic
Pe decreases by a factor of 2 in passing from a coarser to a finer level.

The first set of simulations is aimed at numerically verifying the theoretical converger
rate of the time splitting scheme under different Pe and CFL numbers. Second order cor
gence rate can be observed on a problem with smooth solution (small Pe number) emplc
Atq = Aty = AX2. Table | reports the errors and convergence rates at the different lev
for a case withD; = D, =1 x 1072 m?/s andv =1 m/s. Correspondingly the grid Peclet
number varies between 9.2P=1) to 0.58 (=5), while CFL goes to zero. First order
convergence rate is instead achieved whér= O(Ax). Table |l reports the results to the
same problem obtained with constant CFL numbers (0.28 and 0.14, respectively) usi
constantAty = At,. Convergence is still superlinear but seems to tend asymptotically
first order, as predicted by the theory.
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TABLE |
One-Dimensional Example: Convergence Behavior
for Aty= Aty= AX?

| Pe el Rate
1 9.22 1.24e-2

2 4.61 3.67e-3 1.76
3 231 8.0le-4 1.98
4 1.15 2.07e-4 1.97
5 0.58 7.13e-5 1.86

The second set of simulations is aimed at determining the best time stepping strategy.
the numben, of advective time steps per dispersive time step, for which the error rema
reasonably small and CPU time is minimal. It is intuitive to think that the behavior of tf
time splitting approach depends on the given Peclet number. For small Pe, i.e., dominan
persion, one expects convergence to be mainly driven by the MHFE technique discreti:
the dispersion terms. The transient behavior of the solution should be well captured evel
n, =1, i.e.,Aty = Aty. On the other hand, for large Pe, the advective terms become impi
tantand thus the advective transient has to be accurately captured. We expect for this ca
bestaccuracy whest, < Atg, or ny > 1. Verification of this behavior is obtained for a given
Peclet number by comparing errdeg|, as given in Eg. (36), and CPU times for different
values ofn, on a fixed mesh level. For this purpose we chose the mesh with 1200 tri:
gles ( = 3). The dispersion coefficient varies in the ramye- 2 x 1072 ~ 0.5 x 1074 m?/s,
while velocity is kept constant at= 0.5 m/s. These values correspond to Peclet numbe
varying from 0.28, a dispersion dominated problem, to 115, a convection dominated c
The results of the different simulations are reported in Tables Il to VI. Each column of t
tables contains the resultg{|, and CPU times in second) for a fixed value and for the
differentn, values tested. Subsequent columns (rows) are characterized by dayig)
values. The CFL number as well a4, are thus constant along the main diagonals of th
tables. For example, in Table Il the advective time step is the samne<£0.25x 107! s)
for the three caseAty=0.25x 1073 s andny =1, Aty=0.5x 10°% s andn, =2, and
Atg=1x 103 s andn, =4.

When dispersion dominates, i.e.,£€.28, the accuracy of the scheme is mainly influ-
enced by the size afty, as can be seenin Table Ill. First order convergence rate can be s
in every row where the values increase linearly witly. It is worth noting that the relative

TABLE Il
One-Dimensional Example: Convergence Behavior foAty = At,

| Pe el Rate | Pe lal Rate

1 9.22 1.47e-2 1 9.22 1.27e-2

2 4.61 5.40e-3 1.44 2 4.61 4.25e-3 1.58
3 2.31 1.84e-3 1.50 3 2.31 1.14e-3 1.74
4 1.15 7.67e-4 1.42 4 1.15 4.02e-4 1.66
5 0.58 3.54e-4 1.34 5 0.58 1.65e-4 1.57

Note.CFL=0.28 (left) and CFl=0.14 (right).



TABLE Il
One-Dimensional Example: Relative Error Norm |e;| and CPU Times for Pe = 028

0.25x 1072 0.5x 107° 1x10°®
Aty
n, |es| x 1C° CPU (s) les| x 1C6° CPU (s) leg| x 10° CPU (s)
1 0.69 35.94 1.42 20.20 2.87 12.07
2 0.56 38.20 1.13 2151 2.30 12.71
4 0.50 44.16 1.00 22.60 2.01 13.95
TABLE IV
One-Dimensional Example: Relative Error Norm |e;| and CPU Times for Pe =288
At 0.25x 10°° 0.5x 10°° 1x10° 2x 107
d
N, les] x 18 CPU(s) |eslx10° CPU(s) |eslx10° CPU(s) e x10° CPU(s)
1 221 29.28 4.06 14.77 7.91 7.72
2 155 32.17 2.46 16.06 4.42 8.43 8.57 4.67
4 1.23 38.09 1.76 19.08 2.86 9.90 5.25 5.44
8 1.10 50.16 1.43 25.10 2.13 12.83 3.52 6.78
16 1.31 36.84 1.80 18.48 2.62 9.65
32 1.62 30.25 2.30 15.18
TABLE V

One-Dimensional Example: Relative Error Norm |e;| and CPU Times for Pe =283

Aty
Na

1x10° 2x10°® 4x10°° 8x 107 16x 1073 32x 107

sl CPU |y CPU |esy CPU |e CPU & CPU e CPU
x1P  (s) x10® (s) x1® (s) x1F (s) x1® (s) x1C¢ (s)

o~ NP

32
64
128

4.62 7.19

2.25 798 4.70 3.98

1.20 954 224 470 475 2.35

0.78 1255 1.19 6.21 2.26 3.08 4.47 1.66

0.66 18.60 0.79 925 121 459  2.29 242 411 1.23

0.61 3780 063 1537 0.79 759 1.28 394 230 202 376 0.9

0.60 5556 059 2740 0.63 1352 0.86 717 136 350 238 1.7
059 5101 059 2550 070 1348 099 6.65 154 3.08

TABLE VI
One-Dimensional Example: Relative Error Norm |e;| and CPU Times for Pe =115

1x10°° 2x 102 4x10°3 8x 102 16x 1073 32x 108
Aty |es] CPU les] CPU les) CPU les) CPU |es] CPU |&s] CPU
n, xI1@ (s) x 10 (s) x 10 (s) x10® (s) x1 (s) x1C (s)
1 6.06 7.28
2 2.67 8.03 5.62 4.00
4 1.78 9.51 2.64 4.71 5.85 2.32
8 1.90 12.33 1.74 6.16 2.92 3.06 5.48 1.58
16 2.10 18.39 1.88 9.03 1.60 4.50 2.66 2.33 4.46 1.16
32 2.10 14.90 1.80 7.45 1.44 3.82 2.39 1.91 3.57 0.97
64 2.02 13.27 1.65 6.75 1.63 3.41 1.88 1.71
128 1.66 6.33 1.56 3.20
256

181 6.19

192
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FIG. 2. Relative accuracy vs CPU time for differeity and fixed Peclet number2.88.

error significantly decreases from the case witk= 1 to n, =4 (by about 30%), whereas
the CPU time increases only by 15% on the average. This fact suggestswsirigalso
for very small Peclet numbers.

At Pe=2.88, an intermediate value of the Peclet number (Table 1V), we still recogni
first order convergence rate along the rows. However, the error decrease along the diag
is now much less pronounced, indicating that in this case shiglhre needed to maintain
accuracy. These results are exemplified graphically in Fig. 2 where four plets e§ CPU
time corresponding to four values oty are reported. For each curve, the data points refe
to then, values of Table IV. Hence, the optiméAty, n;) combination can be found on
the intersection of the envelope of the curves with the horizontal line corresponding to
desired accuracy. Obviously, there is no unique strategy to choose the optinalues,
however, a few observations can be helpful for this purpose. Efficiency reasons dem
that Aty be not too small, so as to minimize the number of linear system solutions. On
other hand, accuracy at this level of Peclet numbers already requiresstypadind thus
largen,(>4). For example, a reasonable choice for our test case couldfpe 10-2 and
N, =16.

At Pe= 288 advection starts to dominate over dispersion. The valag &fnow impor-
tant, as can be seen from the significant error decrease in the columns of Table V. We
note that the error remains almost constant along the diagonals, i.e., for conttamid
increasingAty. Note that, for eaciaty value, the increase in accuracy tends to be smalle
asn, increases, suggesting that after a certain valug,ofonvergence tends to stagnate.
From this observation, we may argue that the truncation error of the scheme is proporti
to Aty and toAt,,

ler] & O(Aty, AX?) + O(Aty, AX?) = |er,| + |er,

. (37)

With this model we have that, for constafity, limnp, .o l€7| = liMat,—0 67| = |eT,| €X-
plaining the experimented numerical behavior.

At even higher Peclet numbers (Table VI,2&15) the same behavior can be observel
with one notable exception. For constay the error attains a minimum value for a specific
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FIG. 3. Schematic description of the domain and boundary conditions for the two-dimensional test case

n,. This behavior suggests that errors due to the operator splitting technique accumt
with the advective time step and theig = e, (Na).

3.2. Two-Dimensional Infiltration of Chloride lon in a Surface Aquifer

The applicability of the proposed approach is shown on a realistic two-dimensiol
problem of infiltration of a conservative contaminant into a saturated—unsaturated surf
aquifer. The test case considers a ditched-drained aquifer with incident steady rainfall
trickle infiltration of chloride ion [11]. The geometry of the domain and the boundary col
ditions employed in the solution of the flow and transport problems are described in Fig
The boundary conditions imposed along face AG correspond to the presence of a see

FIG. 4. Computational mesh used in the two-dimensional test case.
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FIG.5. Two-dimensional test-case: concentration contours at 14.7 days (top) and 45.2 days (bottom).

face and thus to an outflow condition from which the aquifer is drained. The saturate
unsaturated flow equation is solved in steady state conditions by means of a Richa
equation solver based on the mixed hybrid finite element method [2]. The physical
rameters of the simulation assume the following valugs=0.1 cm/d, Vs =0.05 cm/d
(Fig. 3), Ks=1 cm/d. The moisture retention curves of [12] are used with the follow
ing parameter valuegt =0.015,8=2,y =3,a=2,b=35, ys=-10 cm,S,; =0.01.
The Darcy velocity field = (vy, vy)T and water saturatio, values as calculated from
the solution of the flow problem are used in a 120-day simulation of the transport of
chloride ion. For this latter problem we have used a dispersion tddsediag(D1, D»)

as given by [1]:D; =« [v| +nS, Do and Dy =a7|v|+nS, Do where [v| = | /v + v,

a. =0.5 cm is the longitudinal dispersivitgyr =0.1 cm is the transverse dispersivity,
¢ =0.30 is the porosity of the medium, am = 1.e — 06 cn?/s is the molecular diffusion
coefficient.

The mesh employed is made up of 2501 nonuniform triangles and 4800 edges (Fig. 4).
time step sizes ar&ty = 0.5 days together with, = 50. The simulations are characterized
by CFL=0.44 and Pe=5.55. With this choice of parameters the advective phase of tf
time-splitting algorithm is approximately twice as expensive than the dispersive phase ((
and 0.41 s per time step, respectively, on a DEC Alpha-600 workstation).
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FIG. 6. Two-dimensional test case: concentration contours at 90.2 days (top) and 120 days (bottom).

In Figs. 5 and 6 the solute concentration contours at 14.7, 45.2, 90.2, and 120 days of
ulation are shown. At the beginning the concentration plume infiltrates downwards with
unsaturated flow. Once it reaches the water table, it finds a more pronounced horizonta
locity in the saturated zone and starts moving towards the seepage face and exits the do

A few observations from the numerical standpoint are worth mentioning. The soluti
obtained with the proposed approach does not present oscillations in any part of the dot
and at any time. This verifies that the property of the FV scheme of being TVD is retair
in the time-splitting algorithm, which maintains monotonicity in all our simulations. Th
plume shape in Figs. 5 and 6 shows a front that is slightly steeper than the correspon
front calculated by standard Galerkin finite elements (GFE) with no upwind, as can be s
from Fig. 7 that shows the solution to the same problem at 45.2 days as obtained by ¢
[10]. This confirms the fact that the combination of MHFE and FV introduces less numeri
diffusion than standard FE. Finally, the mass balance in all simulations is satisfied wit
the accuracy of the linear system solution in the dispersive phase (i7€%,1id contrast
with FE applications where mass balance errors of few percents are commonly obser
These characteristic features of the time-splitting algorithm developed in this paper do
change at larger Peclet numbers as long as the stability criteria for the advection stef
satisfied.
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FIG.7. Two-dimensional test-case: concentration contours at 45.2 days as obtained by the standard Gal
FEM scheme.

4. CONCLUSIONS

We have presented and studied a first order accurate in time, second order accure
space, time-splitting approach for the numerical solution of the two-dimensional advecti
dispersion equation typically arising in groundwater contaminant transport simulations. -
technique is based on the separate discretization of the dispersive and advective terms
governing equation by means of the discontinuous RTO mixed hybrid finite element te
nigue and a high resolution Godunov-type finite volume method, respectively. Both th
techniques are defined on triangles and use consistent functional approximations of
centrations. The final solution is obtained by means of a two-step time-splitting proced
employing explicit in time finite differences for the FV scheme and implicit time steppin
for MHFE. The system of linear equations resulting from the implicit time stepping of t
MHFE scheme is solved using a Schur complement decomposition to reduce the orig
system to a smaller positive definite linear system. The explicit character of the Godur
type method is well suited for capturing sharp fronts with introduction of minimal artificie
diffusion. Different time stepping strategies can be used for the two steps. In the disper:
step, the most computationally demanding, the time step size is not limited by stabi
constraints and its choice is dictated only by accuracy considerations. On the other h
the advective step has to satisfy a typical CFL stability condition but remains stable act
the entire range of Peclet numbers. To minimize the differences in the computational cc
several advective time steps can be performed in one single dispersive step.

Numerical tests on a one-dimensional sample problem are used to verify the theore
properties of the proposed scheme and to experiment different time-stepping strategie
various Peclet numbers. The results show that the scheme is first order accurate in time\
global second order accuracy in space is achieved for reasonably smooth solutions.
cases run at different Peclet numbers show that an effective compromise between acci
and computing time can be achieved when the ratio between the number of advective
steps per dispersive time step is always larger than one. This ratio increases at larger F
numbers.

A two-dimensional advection-dominated groundwater transport problem is presente
show the applicability of the proposed approach to realistic problems. The results of
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simulation confirm that the time-splitting approach does not suffer from Peclet limitatior
displaying only small amounts of numerical diffusion.

N
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